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Introduction
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Towards Noise-free Path Tracing
Ingredients:

Convergence:

Average many samples, rely on the
law of large numbers to approach E.

Importance Sampling:
“Work smarter; not harder’] by

taking better samples.

Specialized techniques:

The right tool for the task; e.g. light
tracing / photon mapping for caustics.
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Introduction

Towards Noise-free Path Tracing
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Introduction

Towards Noise-free Path Tracing
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Reprojection

Assumptions

Converging requires a stationary camera.

T Or: reprojection.

?)

at a = nt -
at Tr
) R

“where was pixel X,y in the previous frame?”

= * diffuse:
= true;

fl + refr)) && (dept
), N )

efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbabilit

e https://www.shadertoy.com /view /1dtGW]

"adiance = SampleLight( &rand
2.x + radiance.y + radiance.z)

v = true;
at brd
at3 fa
it weilly
at cosji
E* (

andom
rive)

it3 brf
rvivel
pdf;
1 = E * brdf * (dot( N, R ) / pdf);

-ion = true:

8,
Pt
PR

’

“.:", o P
Y TN Y,



https://www.shadertoy.com/view/ldtGWl




Well-converged:
Renderer was able to use reprojected data.

Noisy: surface was
recently disocclud

Noisy: surface was
recently disoccluded.
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Reprojection
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Practical Reprojection

Converging requires a stationary camera. Or: reprojection.
MPEG2 approach*:

Using the color of pixel (x,y), search the neighborhood for a similar color.
(problem: requires color of pixel (x,y), which (for path tracing) is noisy in the current and the
previous frames).

Alternative, using additional data: using the world space position of the primary intersection
point, search the neighborhood for the same position.

(we need to store a worldspace position per pixel)

(we may need to store a worldspace positions per sample)

“*: New Fast Binary Pyramid Motion Estimation for MPEG-2 and HDTV Encoding, Song et al., IEEE, 2000.
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Reprojection
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Practical Reprojection
Rasterization approach*:

In the vertex shader, transform the vertex with two
matrices:

1. The current model/view/projection matrix; e B
r I“ A‘KRRQ}R?K L3 RKK'\”:,N g S
4 1 AmRRe kISP ELUE AR K R 8 & A S

2. The MVP matrix of the previous frame.
The difference is a (linear) motion vector per vertex. 1. i

These are then interpolated over the triangle, yielding 'f she i
a motion vector per pixel. g

*: Stupid OpenGL Tricks, Simon Green, NVIDIA, GDC2003 (sorry, best reference I could find...).
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Reprojection

Practical Reprojection
Poor man’s approach:

Assume a fully static scene. Then:

o - 1. Multiply the camera space primary intersection
i position by the inverse camera matrix;

o 2. Multiply the result by the camera matrix of the
A previous frame.
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Reprojection

Challenges

Sample convergence over many frames:
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f»(p) isframe n’s color output at pixel p,
e a is the blending factor (~0.1),
L sp(p) is frame n’s new sample color at pixel p,

fn_l(n(p)) is the reprojected history color from the previous frame.
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Reprojection
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Challenges

Reprojection may fail in several cases:

1. In the previous frame, pixel (x,y) was off-screen.

2. In the previous frame, pixel (x,y) was occluded.

3. Pixel (x,y) is on a specular surface, which is a view-dependent BRDFE.

4. Pixel (x,y) was in the shadow of a moving light in the previous frame, now it isn't.
5.

Solutions:

Pragmatic. Case 1: drop the sample, we can’t average with it. All other cases: c/ip*

*: A Survey of Temporal Antialiasing Techniques, Yang et al., 2020 é - i
W
7
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Reprojection

Further Reading

THE CODE CORSAIR e

| AHOY WORLD!

TEMPORAL AA AND THE QUEST FOR THE HOLY TRAIL

BY ADMIN  JANUARY 2, 2022  GRAPHICS

Long gone are the times where Temporal AA was a novel technique, and slowly mare articles appear covering motivations,
implementations and solutions. | will throw my programming hat into the ring to walk through it, almost like a tutorial, for
the future me and for anyone interested. | am using Matt Pettineo’s MSAAFiIter demo to show the different stages. The
contents come mostly from the invaluable work of many talented developers, and a little from my own experience. | will
introduce a couple of tricks | have come across that | haven't seen in papers or presentations.

Sources of aliasing

The origin of aliasing in CG images varies wildly. Geometric (edge) aliasing, alpha testing, specular highlights, high frequency
normals, parallax mapping, low resolution effects (SSAO, SSR), dithering and noise all canspire to destroy our visuals. Some
solutions, like hardware MSAA and screen space edge detection techniques, work for a subset of cases but fail in different
ways. Temporal techniques attempt to achieve supersampling by distributing the computations across multiple frames,

while addressing all forms of aliasing. This stabilizes the image but also creates some challenging artifacts.

litter

The main principle of TAA is to compute multiple sub-pixel samples across frames, then combine those together into a
single final pixel. The simplest scheme generates random samples within the pixel, but there are better ways of producing
fixed sequences of samples. A short overview of quasi-random sequences can be found here. It is important to select a

e comiarnera Faoavrird Aliirmmirmna and a Aicerrata Rrrirmbiar AfF carmmdoac withim Fha camtiancras Fuamiceallys Ratisiaar A Q wremrls areall

Temporal AA and the quest for
the Holy Trail January 2, 2022
The Rendering of Mafia: Definitive
Edition August 23, 2021

A Mac

2021

of Nanite May 30,

The Rendering of Jurassic World:
Evolution March 12, 2021
Rendering Line Lights July 10,
2019

The Rendering of Rise of the
Tomb Raider December 31, 2018
Areal life pinhole camera January
14,2018

The Rendering of Middle Earth:

Chadow of Mordor December 27


https://www.elopezr.com/temporal-aa-and-the-quest-for-the-holy-trail

-

https://www.shadertoy.com/view/Wt3XRX

ﬁ‘
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Resampling Note:
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=  We calculate the potential contribution
for each light, at each path vertex.

= We create a discrete cdf over the lights
(CDF: cumulative distribution function).

= To pick one light, we need to walk the
cdf a second time.

Importance Sampling Lights

Sampling N lights with 7 ray:

= Use a constant discrete pdf: p; = %, where i € [1..N].

Or:

= Use importance sampling.

N=10: 1 3 6 4 3 11 2 4 2 6
XL, 42
p; =  {1/42, 3/42, 6/42, ..}

But, what is the importance of each light?
We can use the potential contribution* of each light:

A cos0; cosb,
LP E d?2

That is: the emittance of the light, scaled by its solid angle, as seen from a point in the scene.

*: Note: the potential contribution may differ significantly from the actual contribution!
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Resampling
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Resampling

From Multiple to Many Lights
Challenge:

Picking a light with a probability proportional to its potential contribution

))
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Resampling

From Multiple to Many Lights

Potential contribution is proportional to:

= Solid angle
) = Brightness of the light

e Sadly, we cannot pre-calculate potential contribution; it depends on the location
and orientation of the light source relative to the point we are shading.
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Resampling

Many Lights Array
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Resampling
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Resampled Importance Sampling*

The light array allows us to pick a light source proportional to importance.
However, this importance is not very accurate.

We can improve our choice using resampled importance sampling.

1. Pick N lights from the light array (where N is a small number; e.g. 4);

2. For each of these lights, determine the more accurate potential contribution;
3. Translate the potential contribution to importance (using a small cdf);

4. Choose a light with a probability proportional to this importance.

This scheme allows for unbiased, accurate and constant time selection of a good light source.

*: Importance Resampling for Global [llumination, Talbot et al., 2005.
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Resampling
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ReSTIR
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ReSTIR*

Ingredient 1:
Reprojection

Ingredient 2:
Resampling.

Ingredient 3:
Streaming RIS.

~*: Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting, Bitterli et al., 2020.
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ReSTIR

ReSTIR* - Direct Light from a Very Large Number of Lights

Algorithm, in short:

Sample millions of lights for a pixel with one ray to an important light.
e To pick the important light:

N 1. UseRIS;

e 2. Consider the knowledge of the neighbors;

A 3. Consider the knowledge of the past.

AAXDEPTH)

S suviaioiabi Hence: spatio-temporal resampling.

estimaty K-‘%w,;:.:

*: Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting, Bitterli et al., 2020.

1 i =
-ion = true:
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ReSTIR

ReSTIR* - Direct Light from a Very Large Number of Lights

T Applying RIS:

?)

it ‘a = nt - nc
it Tr =1 -
r) R = (D nnt

= * diffuse:

= true;

fl + refr)) 8% (dept
), N );

efl * E * diffuse;

= true;

AAXDEPTH)

survive = SurvivalProbabilit
aine it
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ReSTIR

Weighted Reservoir Sampling

Recall:

) Selecting a light with a probability proportional to its potential contribution:
e

Calculate and store the weight of each light

Calculate the sum S of the weights

Draw a random number in the range [0..S5)

Walk the array of stored weights until the running sum exceeds S.

= * diffuse:
= true;

of1 + refr)) && (dept

o S9N L

), N )
~efl * E * diffuse;
= true;

\AXDEPTH)

Problems:

Storage;
= Visiting the data twice.
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ReSTIR

Weighted Reservoir Sampling

Alternative approach:

1t = nt
352% =

;3 N y = @, Wsum = 9

S for each light index i with weight w;
et Weum += W;

s - if (rand() < w; / Weum) ¥ = i;

= true;

;fl + refr)) 8& (dept . . . ]
o After processing all lights, y contains the chosen light.

= true;
wozeH) = No storage
;urv%ve = Survivgllﬁ'rcbabil‘,i | | Data iS Visited Only Once

Ef il tl%nzé‘%r:::::
=l

g ‘j‘ There is a third, somewhat hidden benefit:

= After choosing the light, we still have the reservoir state in y and wg,;,,.
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ReSTIR

Back to ReSTIR

Combining the ingredients:

1. Pass 1: for each pixel, use reservoir sampling to pick a light.
s oo Result: a reservoir state, consisting of light index y, and wg, ;.
') R = (D

= * diffuse: . . . .

- troe; 2. Pass 2: for each pixel, combine reservoirs of neighborhood.

of1 + refr)) && (dept

. Result: neighborhood combines forces to pick much better lights.

- 3. And finally: store final reservoirs for the next frame.
survive = SurvivalProbabilit

z
N

Result: good picks of previous frames become candidates in the current frame.

The light to which we finally send a shadow ray to is effectively
taken from a massive pool of candidates.

1 i =
-ion = true:



Advanced Graphics - ReSTIR

36

ReSTIR

at a = nt -
it Te =1 - (f
'r) R = (D nnt

= * diffuse;
= true;

fl + refr)) 8& (dept!
), N s

efl * E * diffuse;
= true;

\AXDEPTH)

ReSTIR* - Direct Light from a Very Large Number of Lights

Neighbors & the past:







at Tr = 1
'T) R = (D

= * diffuse:
= true;

2l + refr)) &2

), N )
efl * E * diffuse
= true;

AAXDEPTH)

survive = SurvivalProbabil
estimation - doing

if;

~adiance = SampleLight( &ra
2.x + radiance.y + radiance.:

v = true;

it brdfPdf = EvaluateDiffuse( L

at3 factor = diffuse * INVPI;

at weight = Mis2( directPdf, brdfr
it cosThetaOut = dot( N, L );

E * ((weight * cosThetaOut) / direc

o

andom walk - done properly
rive)

at3 brdf = SampleDiffuse( diffuse, N
irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);
-ion = true:

Today's Agenda:

Prerequisits
Reprojection
Resampling
ReSTIR



at a = nt
at Tr = 1
'r) R = (D

= * diffuse:
= true;

Lt SR
2

SR
=

fl + refr)) &2

), N );
efl * E * diffuse
= true;

\AXDEPTH)

survive = SurvivalProb:
estimation - doing it
if; ]
~adiance = Samplelight| ' :

2.x + radiance.y + rad: A
: + P - y
: - -
v = true; ri - 3 _' & & . i 23 ‘ N
it brdfPdf = EvaluateD: ;.. 3 : 4 it

at3 factor = diffuse * e - ! . ’ | 5 : A 4 X 4
S . ReSTIR (unbiased)  ReSTIR (biased) Reference
ardef)n walk - done properly,

;at3 brdf = SampleDiffuse( diffuse, N, r T]]@I'E’S Stjll 1]01.56... HOW W]]at.7 E ‘ :7

irvive; 7
pdf; 4 3:))7
1 = E * brdf * (dot( N, R ) / pdf); s B

-ion = true:



at a
at Tr =
'r) R = (D

= * diffuse
= true;

fl + refr)) &

), N )
efl * E * diffuse
= true;

\AXDEPTH)

survive = SurvivalProbab
estimation d

if;

"adiance = Samplelight

2.x + radiance.y + radiance

v = true;

it brdfPdf = EvaluateDiffuse

at3 factor = diffuse * INVPI

at weight = Mis2( directPdf, brdf
at cosThetaOut = dot( N, L ):

E * ((weight * cosThetaOut)

andom walk - done properl
rive)

3t3 brdf = SampleDiffuse( diffuse, N

irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf):

-ion = true:

INFOMAGR - Advanced Graphics

Jacco Bikker - November 2022 - February 2023

END of “ReSTIR”

next lecture: “Filtering & Learning GI”

SU\[722,
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