INFOMAGR - Advanced Graphics

Jacco Bikker - November 2022 - February 2023

at a
at Tr =
r) R =

Lecture 14 - “TAA & ReSTIR”

= true;

\AXDEPTH)

Welcomel!

estimation - d

if;

"adiance = Samplelight

2.x + radiance.y + radiance

v = true;

it brdfPdf = EvaluateDiffuse

at3 factor = diffuse * INVPI

at weight = Mis2(directPdf, brdf
ot cosThetaOut = dot(N, L

A §
sy

E * ((weight * cosThetaOut) / di -
<G

andom walk - done properl /40%

2 [o
rive) &
: E b |
3t3 brdf = SampleDiffuse(diffuse, N ‘p"
irvive; =

pdf; R y
1 = E * brdf * (dot(N, R) / pdf); a3y

-ion = true:

at Tr = 1
'T) R = (D

= * diffuse:
= true;

2l + refr)) &2

), N)
efl * E * diffuse
= true;

AAXDEPTH)

survive = SurvivalProbabil
estimation - doing

if;

~adiance = SampleLight(&ra
2.x + radiance.y + radiance.:

v = true;

it brdfPdf = EvaluateDiffuse(L

at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfr
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / direc

o

andom walk - done properly
rive)

at3 brdf = SampleDiffuse(diffuse, N
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);
-ion = true:

Today's Agenda:

Prerequisits
Reprojection
Resampling
ReSTIR

Advanced Graphics - ReSTIR

Introduction

1t
352t
), N
)

at a = nt
at Tr

'r) R = (D

= * diffuse;
= true;

fl + refr)) &2

), N)
efl * E * diffuse
= true;

\AXDEPTH)

survive = SurvivalProbabili
estimation - doing it

if;

~adiance = SampleLight(&rand
2.x + radiance.y + radiance.z

v = true;
it brdfPdf = EvaluateDiffuse(L
at3 factor = diffuse * INVPI;

3t weight = Mis2(directPdf, brdfrd
it cosThetaOut = dot(N, L);
E * ((weight * cosThetaOut) / direc

andom walk - done properly, cl
rive)

3t3 brdf = SampleDiffuse(diffuse, N, r

irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);
-ion = true:

Towards Noise-free Path Tracing
Ingredients:

Convergence:

Average many samples, rely on the
law of large numbers to approach E.

Importance Sampling:
“Work smarter; not harder’] by

taking better samples.

Specialized techniques:

The right tool for the task; e.g. light
tracing / photon mapping for caustics.

Advanced Graphics - ReSTIR 4

Introduction

Towards Noise-free Path Tracing

it cosThetaOut = dot(N, L

£ *(igre < cmecins) e SEUS mod for Minecraft Quake IT RTX

andom walk - done properly, close
rive)

3t3 brdf = SampleDiffuse(diffuse, N, rl,
irvive;
pdf;

1 = E *
-ion = *t

brdf * (dot(N, R) / pdf);
rye

Advanced Graphics - ReSTIR 5

Introduction

Towards Noise-free Path Tracing

Game graphics:

- = dinsi
1t = nt
352t = 1
3o N EYS

) 601ps
= 1spp

3t Tr = 1 - (R€

) R = (D * nn B
o = Profit
;fl + refr)) 8& (dept!

:f’; Z;E * diffuse; But:

= true;

{AXDEPTH)

survive = SurvivalProbabilit

= [tis good ifitlooks good
- = Developer controls lights, geometry, camera (somewhat)

"adiance = SampleLight(&rand I
2.x + radiance.y + radiance.z)

v = true; .

it brdfPdf = EvaluateDiffuse(L, ! Opportunlty:
at3 factor = diffuse * INVPI;

3t weight = Mis2(directPdf, brdfPdrf

it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directPd:

St Mane properiy; closel = Trade some bias for performance.

rive)

The Tomorrow Children, PS4

at3 brdf = SampleDiffuse(diffuse, N, r1, =
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);

-ion = true:

at Tr = 1
'T) R = (D

= * diffuse:
= true;

2l + refr)) &2

), N)
efl * E * diffuse
= true;

AAXDEPTH)

survive = SurvivalProbabil
estimation - doing

if;

~adiance = SampleLight(&ra
2.x + radiance.y + radiance.:

v = true;

it brdfPdf = EvaluateDiffuse(L

at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfr
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / direc

o

andom walk - done properly
rive)

at3 brdf = SampleDiffuse(diffuse, N
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);
-ion = true:

Today's Agenda:

Prerequisits
Reprojection
Resampling
ReSTIR

ReSTIR, ingredient 1.

= * diffuse
= true;

Reprojection

= true;

\AXDEPTH)

survive = SurvivalProbal
estimation d
if;
"adiance = Samplelight

2.x + radiance.y + radiance

v = true;

it brdfPdf = EvaluateDiffuse

at3 factor = diffuse * INVPI

at weight = Mis2(directPdf, brdf
at cosThetaOut = dot(N, L):

E * ((weight * cosThetaOut) di

andom walk - done proper
rive)

3t3 brdf = SampleDiffuse(diffuse, N
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);:
-ion = true:

A §
sy

Advanced Graphics - ReSTIR

Reprojection

Assumptions

Converging requires a stationary camera.

T Or: reprojection.

?)

at a = nt -
at Tr
) R

“where was pixel X,y in the previous frame?”

= * diffuse:
= true;

fl + refr)) && (dept
), N)

efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbabilit

e https://www.shadertoy.com /view /1dtGW]

"adiance = SampleLight(&rand
2.x + radiance.y + radiance.z)

v = true;
at brd
at3 fa
it weilly
at cosji
E* (

andom
rive)

it3 brf
rvivel
pdf;
1 = E * brdf * (dot(N, R) / pdf);

-ion = true:

8,
Pt
PR

’

“.:", o P
Y TN Y,

https://www.shadertoy.com/view/ldtGWl

Well-converged:
Renderer was able to use reprojected data.

Noisy: surface was
recently disocclud

Noisy: surface was
recently disoccluded.

Advanced Graphics - ReSTIR

11

Reprojection

1t = nt
352t = 1
X, N)3
)

3t ‘a = nt - nc
it Tr = 1 - (RE
r) R = (D *

= * diffuse:

= true;

fl + refr)) && (dept

), N);

efl * E * diffuse;

= true;

AAXDEPTH)

survive = SurvivalProbabilit

estimation - doing it
if;

"adiance = SampleLight(&rand I
2.x + radiance.y + radiance.z)

v = true;
at_brdfPdf = EvaluateDiffuse(L. 1

Practical Reprojection

Converging requires a stationary camera. Or: reprojection.
MPEG2 approach*:

Using the color of pixel (x,y), search the neighborhood for a similar color.
(problem: requires color of pixel (x,y), which (for path tracing) is noisy in the current and the
previous frames).

Alternative, using additional data: using the world space position of the primary intersection
point, search the neighborhood for the same position.

(we need to store a worldspace position per pixel)

(we may need to store a worldspace positions per sample)

“*: New Fast Binary Pyramid Motion Estimation for MPEG-2 and HDTV Encoding, Song et al., IEEE, 2000.

Advanced Graphics - ReSTIR 12

Reprojection

1t = nt
352t = 1
), N);
)

it ‘a = nt -
it Tr = 1 - (RE
'r) R = (D

= * diffuse:
= true;

fl + refr)) && (dept

), N)
-efl *

E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbabilit
estimation - doing it

if;

"adiance = SampleLight(&rand
2.x + radiance.y + radiance.z)

v = true;
at_brdfPdf = EvaluateDiffuse(L. 1

-ion = true:

J h

Practical Reprojection
Rasterization approach*:

In the vertex shader, transform the vertex with two
matrices:

1. The current model/view/projection matrix; e B
r I“ A‘KRRQ}R?K L3 RKK'\”:,N g S
4 1 AmRRe kISP ELUE AR K R 8 & A S

2. The MVP matrix of the previous frame.
The difference is a (linear) motion vector per vertex. 1. i

These are then interpolated over the triangle, yielding 'f she i
a motion vector per pixel. g

*: Stupid OpenGL Tricks, Simon Green, NVIDIA, GDC2003 (sorry, best reference I could find...).

Advanced Graphics - ReSTIR 13

Reprojection

Practical Reprojection
Poor man’s approach:

Assume a fully static scene. Then:

o - 1. Multiply the camera space primary intersection
i position by the inverse camera matrix;

o 2. Multiply the result by the camera matrix of the
A previous frame.

1AXDEPTH)

Or:

if;

"adiance = Samplelight
2.x + radiance.y + radiance

Use the planes of the view pyramid to determine where pixel (x,y) would have been in the
it _brdfPdf = EvaluateDiffuse .
previous frame.

. N . ST
(this method is implemented in Lighthouse 2). & N
= NV=
1) Yy

A& %

N
2yl

Advanced Graphics - ReSTIR 14

Reprojection

Challenges

Sample convergence over many frames:

1t = nt
352t = 1

) 0); Keep a running average*:

?)

it ‘a = nt -
it Tr = 1 - (RE

e) R = (D * fn(p) =qa- Sn(p) +(1—-a)- fn—l(n(p))

= * diffuse:
= true;

fl + refr)) && (dept Where
), N);

efl * E * diffuse;

= true;

\AXDEPTH)

f»(p) isframe n’s color output at pixel p,
e a is the blending factor (~0.1),
L sp(p) is frame n’s new sample color at pixel p,

fn_l(n(p)) is the reprojected history color from the previous frame.

2.x + radiance.y + radiance.z)

v = true;

at brdfPdf = EvaluateDiffuse(L. I

at3 factor = diffuse * INVPI;

it weight = Mis2(directPdf, brdfPdf
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directr

andom walk - done properly, close
rive)

*: A Survey of Temporal Antialiasing Techniques, Yang et al., 2020

3t3 brdf = SampleDiffuse(diffuse, N, rl,
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);

-ion = true:

Advanced Graphics - ReSTIR 15

Reprojection

), N

3)

at a = nt
at Tr =1
r) R = (D

= * diffuse:

= true;

:fl + refr)) 22 (de
), N)

efl * E * diffuse
= true;

AAXDEPTH)

~adiance = SampleLight(&rand
2.x + radiance.y + radiance.z

v = true;
st _brdfPdf = EvaluateDiffuse(L

-ion = true:

Challenges

Reprojection may fail in several cases:

1. In the previous frame, pixel (x,y) was off-screen.

2. In the previous frame, pixel (x,y) was occluded.

3. Pixel (x,y) is on a specular surface, which is a view-dependent BRDFE.

4. Pixel (x,y) was in the shadow of a moving light in the previous frame, now it isn't.
5.

Solutions:

Pragmatic. Case 1: drop the sample, we can’t average with it. All other cases: c/ip*

*: A Survey of Temporal Antialiasing Techniques, Yang et al., 2020 é - i
W
7

Advanced Graphics - ReSTIR

Reprojection

Further Reading

THE CODE CORSAIR e

| AHOY WORLD!

TEMPORAL AA AND THE QUEST FOR THE HOLY TRAIL

BY ADMIN JANUARY 2, 2022 GRAPHICS

Long gone are the times where Temporal AA was a novel technique, and slowly mare articles appear covering motivations,
implementations and solutions. | will throw my programming hat into the ring to walk through it, almost like a tutorial, for
the future me and for anyone interested. | am using Matt Pettineo’s MSAAFiIter demo to show the different stages. The
contents come mostly from the invaluable work of many talented developers, and a little from my own experience. | will
introduce a couple of tricks | have come across that | haven't seen in papers or presentations.

Sources of aliasing

The origin of aliasing in CG images varies wildly. Geometric (edge) aliasing, alpha testing, specular highlights, high frequency
normals, parallax mapping, low resolution effects (SSAO, SSR), dithering and noise all canspire to destroy our visuals. Some
solutions, like hardware MSAA and screen space edge detection techniques, work for a subset of cases but fail in different
ways. Temporal techniques attempt to achieve supersampling by distributing the computations across multiple frames,

while addressing all forms of aliasing. This stabilizes the image but also creates some challenging artifacts.

litter

The main principle of TAA is to compute multiple sub-pixel samples across frames, then combine those together into a
single final pixel. The simplest scheme generates random samples within the pixel, but there are better ways of producing
fixed sequences of samples. A short overview of quasi-random sequences can be found here. It is important to select a

e comiarnera Faoavrird Aliirmmirmna and a Aicerrata Rrrirmbiar AfF carmmdoac withim Fha camtiancras Fuamiceallys Ratisiaar A Q wremrls areall

Temporal AA and the quest for
the Holy Trail January 2, 2022
The Rendering of Mafia: Definitive
Edition August 23, 2021

A Mac

2021

of Nanite May 30,

The Rendering of Jurassic World:
Evolution March 12, 2021
Rendering Line Lights July 10,
2019

The Rendering of Rise of the
Tomb Raider December 31, 2018
Areal life pinhole camera January
14,2018

The Rendering of Middle Earth:

Chadow of Mordor December 27

https://www.elopezr.com/temporal-aa-and-the-quest-for-the-holy-trail

-

https://www.shadertoy.com/view/Wt3XRX

ﬁ‘

https://www.shadertoy.com/view/Wt3XRX

at Tr = 1
'T) R = (D

= * diffuse:
= true;

2l + refr)) &2

), N)
efl * E * diffuse
= true;

AAXDEPTH)

survive = SurvivalProbabil
estimation - doing

if;

~adiance = SampleLight(&ra
2.x + radiance.y + radiance.:

v = true;

it brdfPdf = EvaluateDiffuse(L

at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfr
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / direc

o

andom walk - done properly
rive)

at3 brdf = SampleDiffuse(diffuse, N
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);
-ion = true:

Today's Agenda:

Prerequisits
Reprojection
Resampling
ReSTIR

ReSTIR, ingredient 2:

= * diffuse
= true;

Resampling

= true;

\AXDEPTH)

survive = SurvivalProbal
estimation d
if;
"adiance = Samplelight

2.x + radiance.y + radiance

v = true;

it brdfPdf = EvaluateDiffuse

at3 factor = diffuse * INVPI

at weight = Mis2(directPdf, brdf
at cosThetaOut = dot(N, L):

E * ((weight * cosThetaOut) di

andom walk - done proper
rive)

3t3 brdf = SampleDiffuse(diffuse, N
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);:
-ion = true:

A §
sy

Advanced Graphics - ReSTIR 20

Resampling Note:

1t = nt
352t =
), N
)

at a = nt
at Tr = 1
'r) R = (D

= * diffuse:
= true;

of1 + refr)) && (dept

), N)
efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbabilit
estimation - doing it

if;

“adiance = SampleLight(&rand
2.x + radiance.y + radiance.z

v = true;

it brdfPdf = EvaluateDiffuse(L. |
at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfpds
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directF

andom walk - done properly, cle
rive)

3t3 brdf = SampleDiffuse(diffuse, N, rl

irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);
-ion = true:

= We calculate the potential contribution
for each light, at each path vertex.

= We create a discrete cdf over the lights
(CDF: cumulative distribution function).

= To pick one light, we need to walk the
cdf a second time.

Importance Sampling Lights

Sampling N lights with 7 ray:

= Use a constant discrete pdf: p; = %, where i € [1..N].

Or:

= Use importance sampling.

N=10: 1 3 6 4 3 11 2 4 2 6
XL, 42
p; = {1/42, 3/42, 6/42, ..}

But, what is the importance of each light?
We can use the potential contribution* of each light:

A cos0; cosb,
LP E d?2

That is: the emittance of the light, scaled by its solid angle, as seen from a point in the scene.

*: Note: the potential contribution may differ significantly from the actual contribution!

Advanced Graphics - Various 21

Resampling

1t = nt

352% =

), N)

)

at a = nt
it Tr = 1 -
'r) R = (D
= * diffuse:
= true;

of1 + refr)) && (dept
), N);

efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbabili
estimation - doing it

if;

"adiance = SampleLight(&rand
2.x + radiance.y + radiance.

o+

v = true;
at brdfPdf = EvaluateDiffuse|
at3 factor = diffuse * INVPI;

it weight = Mis2(directPdf,
it cosThetaOut = dot(N, L);
E * ((weight * cosThetaOut)

andom walk - done properly, ¢
rive)

it3 brdf = SampleDiffuse(diffi
irvive;
pdf;

1 = E * brdf * (dot(N, R) / pdf);
-ion = true:

N, P15 r2, &R

Advanced Graphics - ReSTIR

22

Resampling

From Multiple to Many Lights
Challenge:

Picking a light with a probability proportional to its potential contribution

))

tn o requires evaluation of all lights, i.e.:

'r) R =

= * diffuse: = L] 2

- true; = Fetching light properties from memory;

i1+ vetey) 82 (4 = Calculations: includes 1/72, cos 8, BRDF evaluation;

e Ve« airruse = Storing the result in the cdf array.

AAXDEPTH) ~

e If we have more than a dozen ‘ . A
T or so lights, this is not feasible. & ”
o D R L5 e
v = true; ,,’

at brdfPdf = EvaluateDiffuse(L |
3t3 fa?ctor_= (.iiffus? A INVPI,M“V ; . J
S e Solution: precalculate potential »

E * ((weight * cosThetaOut) / direc 3 " nn “
andom walk - done properly] Contrlbutlon '? i

+
rive) b b §
! -
3t3 brdf = SampleDiffuse(diffuse, N, ri — —— .
rvive; P “ ﬁ
= i
1 = E * brdf * (dot(N, R) / pdf): b k . i .

-ion = true:

Advanced Graphics - ReSTIR

23

Resampling

From Multiple to Many Lights

Potential contribution is proportional to:

= Solid angle
) = Brightness of the light

e Sadly, we cannot pre-calculate potential contribution; it depends on the location
and orientation of the light source relative to the point we are shading.

1+ rere)) a2

‘ifiri)i;f = We can however precalculate a less refined potential contribution based on:
AXDEPTH)

" Area

e~ semsles g e = Brightness

2.x + radiance.y + radiance.:

v = true;

it brdfPdf = EvaluateDiffuse(L
at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfr
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut)

andom walk - done properly
rive)

3t3 brdf = SampleDiffuse(diffuse, N, r
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);
-ion = true:

Advanced Graphics - ReSTIR 24

Resampling

Many Lights Array

- = dinsi
1t = nt

3
?:’T;.: The light array stores pointers to (or indices of) the lights in the scene.
e For N lights, light array size M is several times N.

;fl + refr)) && (deptl
e Ve« ateruse; Each light occupies several consecutive slots in the light array, proportional to
= true;

its (coarse) potential contribution.

\AXDEPTH)

survive = SurvivalProbabilit
estimation - doing it

" . Selecting a random slot in the light array now yields (in constant time) a
-adiance = Samplelight(&rand. ! slots fOT' L

2.x + radiance.y + radiance.z) . . . ay s
single light source L, with a probability of

v = true;

at brdfPdf = EvaluateDiffuse(L. I

at3 factor = diffuse * INVPI;

3t weight = Mis2(directPdf, brdfPdrf

it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directPd:

andom walk - done properly, closel
rive)

at3 brdf = SampleDiffuse(diffuse, N, r1, =
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);

-ion = true:

Advanced Graphics - ReSTIR 25

Resampling

1t = nt
352t = 1
), N);
)

it ‘a = nt -
it Tr = 1 - (RE
) R = (D * nr

= * diffuse:
= true;

fl + refr)) && (dept

), N);
efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbabilit
estimation - doing it

if;

"adiance = SampleLight(&rand
2.x + radiance.y + radiance.z)

v = true;

at brdfPdf = EvaluateDiffuse(L. I
at3 factor = diffuse * INVPI;

it weight = Mis2(directPdf, brdfPdf
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directr

andom walk - done properly, close
rive)

3t3 brdf = SampleDiffuse(diffuse, N, rl,

irvive;
pdf;
1 = E * brdf * (dot(N, R) / pdf);

-ion = true:

Resampled Importance Sampling*

The light array allows us to pick a light source proportional to importance.
However, this importance is not very accurate.

We can improve our choice using resampled importance sampling.

1. Pick N lights from the light array (where N is a small number; e.g. 4);

2. For each of these lights, determine the more accurate potential contribution;
3. Translate the potential contribution to importance (using a small cdf);

4. Choose a light with a probability proportional to this importance.

This scheme allows for unbiased, accurate and constant time selection of a good light source.

*: Importance Resampling for Global [llumination, Talbot et al., 2005.

Advanced Graphics - ReSTIR 27

Resampling

fim

15 i 16 17 firn 18 i 5T
® 8 8 8 8 0O B B O B O B O BB B B O

1 -

Q
7

1t = nt

352t = 1

), N);

)

at a = nt -
T =21 =
'r) R = (D

= * diffuse:
= true;

f1 + refr)) && (dept

), N);
efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbabilit
estimation - doing it

if;

"adiance = SampleLight(&rand
2.x + radiance.y + radiance.z

v = true;
it brdfPdf = EvaluateDiffuse(L
at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfpds
it cosThetaOut = dot(N, L);
E * ((weight * cosThetaOut) / directF

—» 164

19
andom walk - done properly, close
rive)

e https://www.voutube.com /watch?v=7Znr1]JLI5uY
3t3 brdf = SampleDiffuse(diffuse, N, rl,
e

= E:t::(eﬂ: * (dot(N, R) / pdf);

https://www.youtube.com/watch?v=Znr1JJLI5uY

at Tr = 1
'T) R = (D

= * diffuse:
= true;

2l + refr)) &2

), N)
efl * E * diffuse
= true;

AAXDEPTH)

survive = SurvivalProbabil
estimation - doing

if;

~adiance = SampleLight(&ra
2.x + radiance.y + radiance.:

v = true;

it brdfPdf = EvaluateDiffuse(L

at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfr
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / direc

o

andom walk - done properly
rive)

at3 brdf = SampleDiffuse(diffuse, N
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);
-ion = true:

Today's Agenda:

Prerequisits
Reprojection
Resampling
ReSTIR

Advanced Graphics - ReSTIR

ReSTIR

it a = nt - nc
3t Tr = 1 - (RO
'r) R = (D nnt

= * diffuse;
= true;

fl + refr)) 8& (dept!

), N);
efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbability

estimation - doing it p

if;

~adiance = SampleLight(&rand

2.x + radiance.y + radiance.z)

v = true;

at brdfPdf = EvaluateDiffuse(L. N

at3 factor = diffuse * INVPI;

it weight = Mis2(directPdf, brdfPdf

it cosThetaOut = dot(N, L):

E * ((weight * cosThetaOut) / directPd:

andom walk - done properly, closel
rive)

3t3 brdf = SampleDiffuse(diffuse, N, r1,

irvive;
pdf;
1 = E * brdf * (dot(N, R) / pdf);

-ion = true:

ReSTIR*

Ingredient 1:
Reprojection

Ingredient 2:
Resampling.

Ingredient 3:
Streaming RIS.

~*: Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting, Bitterli et al., 2020.

Advanced Graphics - ReSTIR 31

ReSTIR

ReSTIR* - Direct Light from a Very Large Number of Lights

Algorithm, in short:

Sample millions of lights for a pixel with one ray to an important light.
e To pick the important light:

N 1. UseRIS;

e 2. Consider the knowledge of the neighbors;

A 3. Consider the knowledge of the past.

AAXDEPTH)

S suviaioiabi Hence: spatio-temporal resampling.

estimaty K-‘%w,;:.:

*: Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting, Bitterli et al., 2020.

1 i =
-ion = true:

Advanced Graphics - ReSTIR 32

ReSTIR

ReSTIR* - Direct Light from a Very Large Number of Lights

T Applying RIS:

?)

it ‘a = nt - nc
it Tr =1 -
r) R = (D nnt

= * diffuse:

= true;

fl + refr)) 8% (dept
), N);

efl * E * diffuse;

= true;

AAXDEPTH)

survive = SurvivalProbabilit
aine it

Advanced Graphics - ReSTIR 33

ReSTIR

Weighted Reservoir Sampling

Recall:

) Selecting a light with a probability proportional to its potential contribution:
e

Calculate and store the weight of each light

Calculate the sum S of the weights

Draw a random number in the range [0..S5)

Walk the array of stored weights until the running sum exceeds S.

= * diffuse:
= true;

of1 + refr)) && (dept

o S9N L

), N)
~efl * E * diffuse;
= true;

\AXDEPTH)

Problems:

Storage;
= Visiting the data twice.

Advanced Graphics - ReSTIR 34

ReSTIR

Weighted Reservoir Sampling

Alternative approach:

1t = nt
352% =

;3 N y = @, Wsum = 9

S for each light index i with weight w;
et Weum += W;

s - if (rand() < w; / Weum) ¥ = i;

= true;

;fl + refr)) 8& (dept . . .]
o After processing all lights, y contains the chosen light.

= true;
wozeH) = No storage
;urv%ve = Survivgllﬁ'rcbabil‘,i | | Data iS Visited Only Once

Ef il tl%nzé‘%r:::::
=l

g ‘j‘ There is a third, somewhat hidden benefit:

= After choosing the light, we still have the reservoir state in y and wg,;,,.

Advanced Graphics - ReSTIR 35

ReSTIR

Back to ReSTIR

Combining the ingredients:

1. Pass 1: for each pixel, use reservoir sampling to pick a light.
s oo Result: a reservoir state, consisting of light index y, and wg, ;.
') R = (D

= * diffuse:

- troe; 2. Pass 2: for each pixel, combine reservoirs of neighborhood.

of1 + refr)) && (dept

. Result: neighborhood combines forces to pick much better lights.

- 3. And finally: store final reservoirs for the next frame.
survive = SurvivalProbabilit

z
N

Result: good picks of previous frames become candidates in the current frame.

The light to which we finally send a shadow ray to is effectively
taken from a massive pool of candidates.

1 i =
-ion = true:

Advanced Graphics - ReSTIR

36

ReSTIR

at a = nt -
it Te =1 - (f
'r) R = (D nnt

= * diffuse;
= true;

fl + refr)) 8& (dept!
), N s

efl * E * diffuse;
= true;

\AXDEPTH)

ReSTIR* - Direct Light from a Very Large Number of Lights

Neighbors & the past:

at Tr = 1
'T) R = (D

= * diffuse:
= true;

2l + refr)) &2

), N)
efl * E * diffuse
= true;

AAXDEPTH)

survive = SurvivalProbabil
estimation - doing

if;

~adiance = SampleLight(&ra
2.x + radiance.y + radiance.:

v = true;

it brdfPdf = EvaluateDiffuse(L

at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfr
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / direc

o

andom walk - done properly
rive)

at3 brdf = SampleDiffuse(diffuse, N
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);
-ion = true:

Today's Agenda:

Prerequisits
Reprojection
Resampling
ReSTIR

at a = nt
at Tr = 1
'r) R = (D

= * diffuse:
= true;

Lt SR
2

SR
=

fl + refr)) &2

), N);
efl * E * diffuse
= true;

\AXDEPTH)

survive = SurvivalProb:
estimation - doing it
if;]
~adiance = Samplelight| ' :

2.x + radiance.y + rad: A
: + P - y
: - -
v = true; ri - 3 _' & & . i 23 ‘ N
it brdfPdf = EvaluateD: ;.. 3 : 4 it

at3 factor = diffuse * e - ! . ’ | 5 : A 4 X 4
S . ReSTIR (unbiased) ReSTIR (biased) Reference
ardef)n walk - done properly,

;at3 brdf = SampleDiffuse(diffuse, N, r T]]@I'E’S Stjll 1]01.56... HOW W]]at.7 E ‘ :7

irvive; 7
pdf; 4 3:))7
1 = E * brdf * (dot(N, R) / pdf); s B

-ion = true:

at a
at Tr =
'r) R = (D

= * diffuse
= true;

fl + refr)) &

), N)
efl * E * diffuse
= true;

\AXDEPTH)

survive = SurvivalProbab
estimation d

if;

"adiance = Samplelight

2.x + radiance.y + radiance

v = true;

it brdfPdf = EvaluateDiffuse

at3 factor = diffuse * INVPI

at weight = Mis2(directPdf, brdf
at cosThetaOut = dot(N, L):

E * ((weight * cosThetaOut)

andom walk - done properl
rive)

3t3 brdf = SampleDiffuse(diffuse, N

irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf):

-ion = true:

INFOMAGR - Advanced Graphics

Jacco Bikker - November 2022 - February 2023

END of “ReSTIR”

next lecture: “Filtering & Learning GI”

SU\[722,

K >
c 4
> b =<
¥)
2 Y
N 2. ﬁ_)y

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

